

Welcome to jupyter-ros’s documentation!

Introduction

jupyter-ros comes with many helpers to make working with ROS and rospy source
code easier inside a Jupyter Notebook. The jupyter-ros tool suite contains the following
pieces:

	publishing and receiving messages from the notebook interface

	a 3D widget for inspecting the robot and sensors in 3D

	playing back bag files and other helpers

General

	Getting Started

	Support

User Documentation

	Installation
	The jupyter-ros server extension

	ROS Essentials
	Subscribing to a ROS topic

	Publishing to a ROS topic

	Calling a ROS service

	Calling a ROS action server

	Turtlesim

	ROS 3D Widgets

	ROS Server Extension

	Troubleshooting
	Websocket Failure

Developer Documentation

	Developer Installation
	Install Jupyter-ROS

	Build Documentation

	Testing

	Contributing
	Ground Rules

	Your First Contribution

	Getting Started

	How to Report a Bug

	How to Suggest a Feature or Enhancement

	Code Review Process

	Community

Reference

	ROS Widgets
	subscribe()

	action_client()

	add_widgets()

	bag_player()

	client()

	publish()

	service_client()

	DepthCloud

	GridModel

	InteractiveMarker

	LaserScan

	Marker

	MarkerArrayClient

	OccupancyGrid

	Path

	PointCloud

	Polygon

	Pose

	PoseArray

	ROSConnection

	SceneNode

	TFClient

	URDFModel

	Viewer

	ROS2 Widgets

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

The easiest way to get started is to create a ROS environment with conda or mamba with the following packages:

	jupyter-ros

	jupyterlab

	ros-noetic-desktop

$ conda create -n ros_env jupyter-ros jupyterlab ros-noetic-desktop -c conda-forge -c robostack
$ conda activate ros_env

Launch JupyterLab
$ jupyter lab

At this point, you should be able to use jupyter-ros from any Jupyter notebook in the same conda environment.

import jupyros

For alternative methods of installing Jupyter-ROS, please visit Installation and Developer Installation.

Support

If you stumble upon any issues or simply have general questions regarding
Jupyter-ROS, please reach out. The fastest way to communicate with the
core-team is through our Gitter channel
RoboStack [https://gitter.im/RoboStack/]. We monitor this channel regularly
to help you get the most out of Jupyter-ROS.

You can also post issues on GitHub [https://github.com/RoboStack/jupyter-ros/issues].
Please take a look at our contributing guidelines for information regarding what to include in a new issue. We are looking forward to your input!

Installation

Jupyter-ROS is distributed as a conda, pip, and npm package. We recommend
installing it inside a conda environment. To install conda, we suggest using
the Miniconda installer [https://docs.conda.io/en/latest/miniconda.html].

Option 1. conda or mamba [Recommended]
$ conda create -n jupyros_env python=3.9
$ conda activate jupyros_env
$ conda install jupyter-ros -c robostack

Option 2. pip
$ pip install jupyros

Option 3. npm
$ npm i jupyter-ros

The jupyter-ros server extension

The jupyter-ros package contains an optional server extension which can be used
to serve static files from a catkin workspace to the web browser. For the 3D
widgets we might have to load meshes to display robots correctly. These meshes
are usually part of a robot description package in ROS. In order to enable the
web browser to access those meshes, we can enable the jupyter-ros server
extension:

$ jupyter serverextension enable jupyros

Enabling: jupyros
- Writing config: /home/user/.jupyter
 - Validating...
 jupyros 0.6.0 OK

The jupyter-ros server extension adds a handler to the Jupyter server that will
return contents from ROS packages. To check that it works, you can (re-)start
the Jupyter server and navigate to localhost:8888/rospkg/rospy/package.xml
or any other file that should exist in your catkin workspace.

Warning

There are currently no security features in the jupyter-ros server
extension. If you have sensitive ROS packages, all contents (including
uncompiled source code) can be found through this extension.

ROS Essentials

Subscribing to a ROS topic

The Jupyter-ROS tools help publish and receive messages in a Jupyter notebook.

For publishing, the package contains tools to automatically generate widgets
from message definitions. For receiving, the jupyter-ros package contains a
helper that redirects output to a specific output widget (instead of spamming
the entire notebook).

import jupyros as jr
import rospy
from std_msgs.msg import String

rospy.init_node('jupyter_node')
jr.subscribe('/sometopic', String, lambda msg: print(msg))

This creates a output widget, and buttons to toggle (stop or start) receiving
messages. Internally, jupyter-ros will save a handle to the subscriber thread.
Note that we did not use the rospy-way of creating a subscriber, but delegated
this to the jupyter-ros package.

If we now send a message from a JupyterLab terminal, we see message being
printed to the output widget below the cell where we executed the
jr.subscribe.

$ rostopic pub /sometopic std_msgs/String "data: 'hello jupyter'" -r 10

[image: _images/subscriber.png]

Publishing to a ROS topic

In the same way we can publish to a ROS topic by using the jr.publish helper.

import jupyros as jr
import rospy
from std_msgs.msg import String

rospy.init_node('jupyter_node')
jr.publish('/sometopic', String)

This results in a jupyter widget where one can insert the desired message in
the text field. The form fields (jupyter widgets) are generated automatically
from the message definition. If a different message type is used, different
fields will be generated. For example, a Vector3 message type contains
three float fields (x,y, and z) for which we will get three FloatTextField
instances; these can only hold float values (and not text).

from geometry_msgs.msg import Vector3

jr.publish('/vectortopic', Vector3)

[image: _images/publisher.png]

Calling a ROS service

The same principles of publishing and receiving messages are applied for
calling ROS services from a Jupyter notebook. Assuming that the service for
adding two integers is available, a service client widget can be created with
the following:

import jupyros
import rospy
from rospy_tutorials.srv import AddTwoInts

rospy.init_node('service_node')
jupyros.service_client('service_name', AddTwoInts)

The generated widget will change depending on the message type being passed.

[image: _images/service_client.png]

Calling a ROS action server

A widget can also be created to call ROS action servers.

import jupyros
import rospy
from actionlib_tutorials.msg import FibonacciAction, FibonacciGoal

rospy.init_node('action_node')

As an example, the Fibonacci server can be initialized from a JupyterLab
terminal.

$ rosrun actionlib_tutorials fibonacci_server.py

The widget for the server called 'fibonacci' can then be generated as follows:

jupyros.action_client('fibonacci', FibonacciAction, FibonacciGoal, callbacks={})

[image: _images/action_client.png]
The fields for the widget depend on the definition for the action goal.

Turtlesim

A widget for the most popular turtlesim animation is also included in
Jupyter-ROS. The widget can be displayed with the code below, showing the
default parameters.

import jupyros
import rospy
from jupyros import TurtleSim

turtlesim = TurtleSim(width=1600,
 height=1600,
 turtle_size=100,
 background_color="#4556FF")

display(turtlesim.canvas)

When initialized, the widget will display a single turtle in the center of the canvas. The turtle images are randomized, so different turtles will appear after each run. Multiple turtles can also be spawned on the same canvas given a desired position (within the canvas limits) and orientation.

turtlesim.spawn(name="turtle2", pose={"x": 630,
 "y": 1260,
 "theta": math.radians(90)})

[image: _images/turtlesim.gif]
The turtles can be moved around by subscribing to topics such as /turtle1/pose to receive new Pose messages.

Retrieve current poses of the two turtles
new_poses = {"turtle1": turtlesim.turtles["turtle1"].pose,
 "turtle2": turtlesim.turtles["turtle2"].pose}

Change the pose for the second turtle
new_poses["turtle2"] = {"x": 800, "y": 300, "theta": 2.5}

Update the canvas
turtlesim.move_turtles(new_poses)

ROS 3D Widgets

In order to visualize robots in the Jupyter notebook, jupyter-ros ships with the
ros3d widgets.
Jupyter widgets (ipywidgets [https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html])
allow for communication between the Python “Kernel” and the JavaScript frontend.

For jupyter-ros, we have utilized the powerful ROS3D.js [https://github.com/RobotWebTools/ros3djs] library to create widgets for the jupyter notebook
frontend. That means that it’s easily possible to create some robot viewers
inside the notebook!

from jupyros import ros3d

v = ros3d.Viewer()
v.objects = [ros3d.GridModel()]
v

[image: _images/jupyter_viewer.png]
ROS3D communicates with ROS via websocket. This communication is configured
through the jupyter widgets protocol, but you are also required to run the
“rosbridge websocket” package in your ROS environment (or launch file).

For this, you need to make sure that you have ros-noetic-rosbridge-suite
and ros-noetic-tf2-webrepublisher.

Then you can run the following launch file to start up the necessary servers:

<launch>
 <include file="$(find rosbridge_server)/launch/rosbridge_websocket.launch" />
 <node pkg="tf2_web_republisher" type="tf2_web_republisher" name="tf2_web_republisher" />
</launch>

Warning

The currently shipped rosbridge suite uses a very old version of the Tornado
web server. This version is incompatible with the more recent version used
by Jupyter. If you run both (Jupyter and rosbridge) from the same Python
environment, it is likely to silently fail (no connection from the ROS 3D
widgets to the rosbridge).

Therefore we recommend to separate the two environments by using conda, and a
generated ROS kernel.

Once the rosbridge websocket is running, we can configure a ROS connection in
the Jupyter notebook, and subscribe to a topic. For example, in order to
subscribe to a laser scan we can use the following code:

from jupyros import ros3d

v = ros3d.Viewer()
rc = ros3d.ROSConnection(url="ws://localhost:9090")
tf_client = ros3d.TFClient(ros=rc, fixed_frame='')

laser_view = ros3d.LaserScan(topic="/scan", ros=rc, tf_client=tf_client)
g = ros3d.GridModel()
v.objects = [g, laser_view]

v

This will now attempt to connect to the websocket at ws://localhost:9090
(which should be the address given to the rosbridge). And if successful, it
should receive data from /scan topic and display it in the 3D viewer.

Note that, similar to RViz, you can select a fixed frame, which will appear at
the origin of the viewer.

Besides the laser scan view, you can add many other visualizations to the
viewer. ROS3D contains classes for a Robot (URDFModel), occupancy grid
(OccupancyGrid), regular and interactive markers (Marker and
InteractiveMarker), Pose, Polygon, PoseArray, Path, and
PointCloud.

If you want to visually change how your Viewer looks, you can use the layout
attribute (this works the same way across many of the ipywidgets [https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html]).

from jupyros import ros3d
from ipywidgets import Layout

v = ros3d.Viewer()
v.layout = Layout(border="3px solid red", width="200px", height="50px")
The following would have had the same effect:
v.layout.border = "3px solid red" ...

[image: _images/red_border.png]

ROS Server Extension

The jupyter-ros package comes with a jupyter server extension to serve static
files (such as robot models) from a catkin workspace.

Once the server extension is installed, you can point the URDFModel URL
parameter to http://localhost:8888/rospkg/ in order for it to search below
that URL for the meshes and other required assets.

The endpoint will use rospkg to find assets in your catkin workspace. For
example, the URL http://localhost:8888/rospkg/roscpp/CMakeLists.txt should
return the CMakeLists file of the roscpp package. This feature is mainly useful
for sending mesh files to the frontend.

Warning

Currently, there is no mechanism in place to filter requests based on file
type. That means, all your source files can be accessed through this endpoint.

Troubleshooting

When working with the official ROS packages, it may be necessary to modify
the Jupyter kernel.

Once you have Jupyter and the jupyros package installed, you can run the
kernel generator to install a special ROS Python kernel for Jupyter. This
modifies a pre-existing kernel in such a way that it knows about the catkin
workspace.

You can find the available jupyter kernels by running:

$ jupyter kernelspec list

Available kernels:
julia ~/.local/share/jupyter/kernels/julia
python3 ~/miniconda3/share/jupyter/kernels/python3
python2 ~/miniconda2/share/jupyter/kernels/python2
xcpp11 ~/miniconda3/share/jupyter/kernels/xcpp11
xcpp14 ~/miniconda3/share/jupyter/kernels/xcpp14
xcpp17 ~/miniconda3/share/jupyter/kernels/xcpp17
xonsh ~/miniconda3/share/jupyter/kernels/xonsh

For maximum compatibility with ROS 1 releases, we want to base the ROS kernel on
the existing Python 2 kernel.

Run the installed generator:

$ ros_kernel_generator python2 /home/$USER/catkin_ws/devel/setup.bash

This will install a new kernel specification next to the installed python2
kernel (in this case at ~/miniconda2/share/jupyter/kernels/ros_python2)
with ROS specific environment variables set to the ones from the catkin
workspace (such as an additional Python path to find the ROS Python libraries).

Websocket Failure

For troubleshooting the ROS 3D widgets, we have prepared the following tips.

The 3D widgets of ROS communicate with the backend through websockets. To make
sure that a websocket connection is established, first, open the “Inspector” (in
FireFox or Chrome, right click -> Inspect Element) and navigate to the “Network”
panel of the Inspector. The network panel shows all requests. If the notebook
cells are now executed we should see a “Websocket” connection being established.

If the websocket connection remains at “Pending…” then you might be using the
wrong Tornado version for the rosbridge websocket server. Using the wrong
Tornado version results in a silent failure. In this case, it is very
important to not mix the Jupyter Python environment with the rosbridge
environment as Jupyter uses a more recent Tornado version than the default
rosbridge websocket installed from the official ROS packages.

Therefore, the fix is usually to reinstall the tornado version from the APT
packages:

sudo apt-get install python-tornado
sudo apt-get install ros-melodic-rosbridge-suite --reinstall

You can also check the network panel to make sure that mesh files are loaded
correctly.

Developer Installation

Install Jupyter-ROS

	Clone repository

$ git clone git@github.com:RoboStack/jupyter-ros.git
$ cd jupyter-ros

	Create a conda environment for development with the following packages

	python = 3.9

	jupyterlab

	jupyter-packaging

	nodejs <= 15

	ros-noetic-desktop

You can use conda as well
$ mamba create -n jupyros_env python=3.9 jupyterlab jupyter-packaging nodejs=15 ros-noetic-desktop -c conda-forge -c robostack

$ mamba activate jupyros_end

	Install jupyter-ros in editable mode

From the jupyter-ros root directory
$ pip install -e .

	Symlink the JupyterLab extension

$ jupyter labextension develop . --overwrite

	Verify installation with Python

import jupyros
print(jupyros.__file__)
Should return /home/user/jupyter-ros/jupyros/__init__.py

Build Documentation

	Create a new conda environment with the following dependencies:

	sphinx

	myst-parser

	jinja2 <= 3.0

	sphinx-rtd-theme

You can use conda as well
$ mamba create -n jupyros_docs sphinx myst-parser jinja2=3.0 -c conda-forge
$ mamba activate jupyros_docs
$ pip install sphinx-rtd-theme

	[Optional] Install jupyter-ros in the environment. This is only necessary for the References page to display correctly; otherwise, there will be a few warnings in the next step.

	Build the documents

$ cd jupyter-ros/docs/
$ make html

	Open the documentation locally

$ cd build/html/
$ python -m http.server

	From a web browser, navigate to localhost:8000

Testing

The simplest way to test any additions to Jupyter-ROS is to create a fresh
environment and install the package in development mode.

	Create new test environment with minimal packages

$ conda create -n test_env python=3.9 jupyterlab nodejs=15 jupyter-packaging ros-noetic-desktop -c conda-forge -c robostack

$ conda activate test_env

	Navigate to the root directory and install jupyter-ros

$ cd jupyter-ros/
$ pip install -e .

If there are any errors with this step, this indicates that the new
additions are not configured correctly for installation. This will require
some additional troubleshooting, but a common issue is to forget to include
newly required dependencies in the setup.py file.

setup_args = {
 'install_requires': [
 'ipywidgets>=7.0.0',
 'bqplot',
 'numpy',
 'rospkg',
 'ipycanvas'
],
}

	Symlink the JupyterLab extension and verify that jupyros can be imported.

$ jupyter labextension develop . --overwrite
$ jupyter lab

import jupyros

This step may also require some troubleshooting depending on the changes
made to Jupyter-ROS. If you see interference from other conda environments,
e.g. additional lab extensions which should not be enabled in the test
environment, it is often helpful to remove the ~/.jupyter directory.

List all the lab extensions
$ jupyter labextension list

Remove jupyter directory [optional]
$ rm -r ~/.jupyter

	Once the setup is complete, it is now time to test the new additions. This
type of testing will vary greatly depending on the changes, we suggest to
use your best judgement.

Contributing

First off, thank you for considering contributing to Jupyter-ROS 🥳. It’s people like you that make Jupyter-ROS such a great tool.

Following these guidelines helps to communicate that you respect the time of the developers managing and developing this open source project. In return, they should reciprocate that respect in addressing your issue, assessing changes, and helping you finalize your pull requests.

Jupyter-ROS is an open source project and we love to receive contributions from our community — you! There are many ways to contribute. For example, you can

	write a new tutorial or a blog post

	improve the documentation or the existing examples

	submit bug reports or feature requests

	write code to incorporate into Jupyter-ROS itself

Ground Rules

We welcome all kinds of contribution and value them highly. We pledge to treat everyone’s contribution fairly and with respect, and we are here to bring awesome pull requests over the finish line.

Please note that we adhere to the Python Community Code of Conduct [https://www.python.org/psf/codeofconduct/] and by contributing to this project you also agree to follow the same guidelines.

Your First Contribution

Working on your first Pull Request? Here are some resources to help you get started:

	First Timers Only [https://www.firsttimersonly.com/]

	Make a Pull Request [https://makeapullrequest.com/]

	How to Contribute to an Open Source Project on GitHub [https://egghead.io/courses/how-to-contribute-to-an-open-source-project-on-github]

At this point, you’re ready to make your changes! Feel free to ask for help; everyone is a beginner at first 😸.

If a maintainer asks you to “rebase” your PR, they’re saying that a lot of code has changed and that you need to update your branch so that it’s easier to merge.

Getting Started

	Create your own fork of the code.

	Do the changes in your fork.

	If your changes only involve spelling or grammar fixes, move to step 7.

	Test your changes in a clean environment and update installation instructions and dependencies as needed.

	When adding new features, make sure to update the documentation and provide an example under notebooks/.

	New notebooks

	Remove all output.

	Remove unnecessary cells.

	Include a descriptive title.

	Specify ROS version in the notebook name, “ROS Turtlesim.ipynb” vs “ROS2 Turtlesim.ipynb”

	Any additional steps the user needs to take to run all the cells in the notebook should be clearly stated in markdown cells.

	If you are happy with your changes, create a pull request.

How to Report a Bug

Security

If you find a security vulnerability, do NOT open an issue. Email w.vollprecht@gmail.com instead. In order to determine whether you are dealing with a security issue, ask yourself these two questions:

	Can I access something that’s not mine, or something I shouldn’t have access to?

	Can I disable something for other people?

If the answer to either of those two questions are “yes”, then you’re probably dealing with a security issue. Note that even if you answer “no” to both questions, you may still be dealing with a security issue, so if you’re unsure, just email us.

Other bugs

When filing an issue, make sure to answer these five questions:

	What version of jupyros are you using?

	What operating system and processor architecture are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?

General questions should be handled through Gitter [https://gitter.im/RoboStack/Lobby] instead of the issue tracker. The maintainers there will answer or ask you to file an issue if you’ve tripped over a bug.

How to Suggest a Feature or Enhancement

If you find yourself wishing for a feature that doesn’t exist in Jupyter-ROS, you are probably not alone. There are bound to be others out there with similar needs. Many of the features that Jupyter-ROS has today have been added because our users saw the need. Open an issue on our issues list [https://github.com/RoboStack/jupyter-ros/issues] on GitHub which includes the following:

	A description of the feature you would like to see

	Why do you need it?

	How should it work?

Code Review Process

Any change to resources in this repository must be through pull requests. This applies to all changes to documentation, code, binary files, etc. No pull request can be merged without being reviewed.

The core team looks at Pull Requests on a regular basis and provides feedback after each review. Once feedback has been given, we expect responses within three weeks. After the three weeks have elapsed, we may close the pull request if it isn’t showing any activity.

A pull request will be merged once all the feedback has been addressed and there are no objections by any of the committers.

Community

You can chat with the core team on gitter.im/RoboStack [https://gitter.im/RoboStack/Lobby]. We try to answer all questions within 48 hours.

ROS Widgets

	
jupyros.ros1.pubsub.subscribe(topic, msg_type, callback)

	Subscribes to a specific topic in another thread, but redirects output!

@param topic The topic
@param msg_type The message type
@param callback The callback

@return Jupyter output widget

	
jupyros.ros1.ros_widgets.action_client(action_name, action_msg, goal_msg, callbacks=None)

	Create a form widget for message type action_msg.
This function analyzes the fields of action_msg and creates
an appropriate widget.
An action client is automatically created which sends a goal to the
action server given as action_name. This allows pressing the
“Send Goal” button to send the message to ROS.

@param action_name The namespace in which to access the action
@param action_msg The action message type
@param goal_msg The goal message type
@param callbacks A dictionary of callback function handles with

optional keys: done_cb, active_cb and feedback_cb

@return jupyter widget for display

	
jupyros.ros1.ros_widgets.add_widgets(msg_instance, widget_dict, widget_list, prefix='')

	Adds widgets.

@param msg_type The message type
@param widget_dict The form list
@param widget_list The widget list

@return widget_dict and widget_list

	
jupyros.ros1.ros_widgets.bag_player(bagfile='')

	Create a form widget for playing ROS bags.
This function takes the bag file path, extracts the bag summary
and play the bag with the given arguments.

@param bagfile The ROS bag file path

@return jupyter widget for display

	
jupyros.ros1.ros_widgets.client(*args, **kwargs)

	Deprecated client for ROS services.
Use service_client() instead.

	
jupyros.ros1.ros_widgets.publish(topic, msg_type)

	Create a form widget for message type msg_type.
This function analyzes the fields of msg_type and creates
an appropriate widget.
A publisher is automatically created which publishes to the
topic given as topic parameter. This allows pressing the
“Send Message” button to send the message to ROS.

@param msg_type The message type
@param topic The topic name to publish to

@return jupyter widget for display

	
jupyros.ros1.ros_widgets.service_client(srv_name, srv_type)

	Create a form widget for message type srv_type.
This function analyzes the fields of srv_type and creates
an appropriate widget.

@param srv_type The service message type
@param srv_name The service name to call

@return jupyter widget for display

	
class jupyros.ros1.ros3d.DepthCloud(**kwargs: Any)

	Display a Depth Cloud for a RGB-D cloud (needs infrastructure on the server side.)

	
class jupyros.ros1.ros3d.GridModel(**kwargs: Any)

	A simple GridModel

Displays a 3D grid.

	Parameters:

	
	cell_size (Float) – Size of the cells in meters

	color (Unicode) – Color of the grid lines (e.g. a hex specifier #FF0000)

	num_cells (Int) – Number of cells in length, and width (default: 2)0

	
class jupyros.ros1.ros3d.InteractiveMarker(**kwargs: Any)

	Interactive Marker Widget

Displays an interactive marker in the Viewer.

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – The topic to subscribe to (default: /basic_controls)

	menu_font_size (Unicode) – Menu font size (default: '0.8em')

	
class jupyros.ros1.ros3d.LaserScan(**kwargs: Any)

	Displays a LaserScan message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /scan)

	point_ratio (Float) – Ratio of points to send to the frontend (default: 1.0)

	message_ratio (Float) – Ratio of messages to send to the frontend (default: 1.0)

	max_points (Int) – Maximum number of points to display (default: 200000)

	color_source (Unicode) – Source field for the color information (default: ‘intensities’)

	color_map (Unicode) – Color map function (default: ‘’)

	point_size (Float) – Point size (default: 0.05)

	static_color (Unicode) – Hex string of the color for visualization (default: "#FF0000")

	
class jupyros.ros1.ros3d.Marker(**kwargs: Any)

	Displays a Marker message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /pose_array)

	path (Unicode) – Marker path (default: /)

	lifetime (Float) – Lifetime of marker in seconds, 0 for infinity (default: 0.0)

	
class jupyros.ros1.ros3d.MarkerArrayClient(**kwargs: Any)

	A client that listens to changes in a MarkerArray and triggers the update of
a visualization.

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /marker_array)

	path (Unicode) – The base path to any meshes that will be loaded (default: '/')

	
class jupyros.ros1.ros3d.OccupancyGrid(**kwargs: Any)

	Displays an Occupancy Grid

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – The topic to subscribe to (default: /basic_controls)

	continuous (Book) – Wether the occupancy grid should continously update (default: False)

	compression (Unicode) – Compression mechanism (default: ‘cbor’)

	color (Unicode) – Color of the grid lines (e.g. a hex specifier #FFFFFF)

	opacity (Float) – Opacity of the occupancy grid (default: 1.0)

	
class jupyros.ros1.ros3d.Path(**kwargs: Any)

	Displays a Path message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /path)

	color (Unicode) – Hex string of the color for visualization (default: "#CC00FF")

	
class jupyros.ros1.ros3d.PointCloud(**kwargs: Any)

	Displays a PointCloud message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /point_cloud)

	point_ratio (Float) – Ratio of points to send to the frontend (default: 1.0)

	message_ratio (Float) – Ratio of messages to send to the frontend (default: 1.0)

	max_points (Int) – Maximum number of points to display (default: 200000)

	point_size (Float) – Point size (default: 0.05)

	static_color (Unicode) – Hex string of the color for visualization (default: "#FF0000")

	
class jupyros.ros1.ros3d.Polygon(**kwargs: Any)

	Displays a Polygon message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /polygon)

	color (Unicode) – Hex string of the color for visualization (default: "#CC00FF")

	
class jupyros.ros1.ros3d.Pose(**kwargs: Any)

	Displays a Pose message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /pose)

	color (Unicode) – Hex string of the color for visualization (default: "#CC00FF")

	length (Float) – Length of pose arrows (default: 1m)

	
class jupyros.ros1.ros3d.PoseArray(**kwargs: Any)

	Displays a PoseArray message

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	topic (Unicode) – Name of the topic (default: /pose_array)

	color (Unicode) – Hex string of the color for visualization (default: "#CC00FF")

	length (Float) – Length of pose arrows (default: 1m)

	
class jupyros.ros1.ros3d.ROSConnection(**kwargs: Any)

	Base ROS Connection

The ROS Connection widget has the parameters with the websocket endpoint to
communicate with the rosbridge server.

	Parameters:

	url (Unicode) – URL endpoint of the websocket. Defaults to ws://{hostname}:9090
where {hostname} is replaced by the current hostname at runtime
(e.g. localhost). You can override the default value by setting the
JUPYTER_WEBSOCKET_URL environment variable.

	
class jupyros.ros1.ros3d.SceneNode(**kwargs: Any)

	Scene Node (to be used in conjunction with DepthCloud)

	
class jupyros.ros1.ros3d.TFClient(**kwargs: Any)

	Base TF Client

The TFClient keeps track of TF frames.

	Parameters:

	
	angular_treshold (Float) – The angular threshold for the TF republisher (default: 0.01)

	translational_treshold (Float) – The translation threshold for the TF republisher (default: 0.01)

	rate (Float) – Update and publish rate for the TF republisher (default: 10.0)

	fixed_frame (Unicode) – Fixed base frame for TF tree (default: ‘’)

	
class jupyros.ros1.ros3d.URDFModel(**kwargs: Any)

	A URDFModel (Robot model)

Displays a 3D robot model.

	Parameters:

	
	ros (ROSConnection instance) – Instance of the ROS Connection that should be used

	tf_client (TFClient instance) – Instance of the TF Client that should be used

	url (Unicode) – URL from which to fetch the _assets_ (mesh and texture files). This can
be either the jupyter-ros server extension (in this case one should use
“http://{hostname}:{port}/rospkg/”) or another server / URL where the
mesh files can be downloaded (default: “http://{hostname}:3000”)

	
class jupyros.ros1.ros3d.Viewer(**kwargs: Any)

	Viewer class

This is the class that represents the actual 3D viewer widget. The viewer
is derived from the ipywidgets.DOMWidget and therefore also implements
the layout attribute which can be used to modify the CSS layout of the
viewer.

	Parameters:

	
	background_color (Unicode) – Background color of the viewer (default: '#FFFFFF')

	alpha (Float) – The alpha value of the background

	objects (List of ROS3D widget instances) – Objects to render in the viewer (e.g. Marker, PointCloud, …)

ROS2 Widgets

Coming soon!

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jupyros	

 	
 	
 jupyros.ros1.pubsub	

 	
 	
 jupyros.ros1.ros3d	

 	
 	
 jupyros.ros1.ros_widgets	

 	
 	
 jupyros.ros1.turtle_sim	

Index

 A
 | B
 | C
 | D
 | G
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	action_client() (in module jupyros.ros1.ros_widgets)

 	
 	add_widgets() (in module jupyros.ros1.ros_widgets)

B

 	
 	bag_player() (in module jupyros.ros1.ros_widgets)

C

 	
 	client() (in module jupyros.ros1.ros_widgets)

D

 	
 	DepthCloud (class in jupyros.ros1.ros3d)

G

 	
 	GridModel (class in jupyros.ros1.ros3d)

I

 	
 	InteractiveMarker (class in jupyros.ros1.ros3d)

J

 	
 	
 jupyros.ros1.pubsub

 	module

 	
 jupyros.ros1.ros3d

 	module

 	
 	
 jupyros.ros1.ros_widgets

 	module

 	
 jupyros.ros1.turtle_sim

 	module

L

 	
 	LaserScan (class in jupyros.ros1.ros3d)

M

 	
 	Marker (class in jupyros.ros1.ros3d)

 	MarkerArrayClient (class in jupyros.ros1.ros3d)

 	
 module

 	jupyros.ros1.pubsub

 	jupyros.ros1.ros3d

 	jupyros.ros1.ros_widgets

 	jupyros.ros1.turtle_sim

O

 	
 	OccupancyGrid (class in jupyros.ros1.ros3d)

P

 	
 	Path (class in jupyros.ros1.ros3d)

 	PointCloud (class in jupyros.ros1.ros3d)

 	Polygon (class in jupyros.ros1.ros3d)

 	
 	Pose (class in jupyros.ros1.ros3d)

 	PoseArray (class in jupyros.ros1.ros3d)

 	publish() (in module jupyros.ros1.ros_widgets)

R

 	
 	ROSConnection (class in jupyros.ros1.ros3d)

S

 	
 	SceneNode (class in jupyros.ros1.ros3d)

 	
 	service_client() (in module jupyros.ros1.ros_widgets)

 	subscribe() (in module jupyros.ros1.pubsub)

T

 	
 	TFClient (class in jupyros.ros1.ros3d)

U

 	
 	URDFModel (class in jupyros.ros1.ros3d)

V

 	
 	Viewer (class in jupyros.ros1.ros3d)

 _static/images/red_border.png
In [5]:

In [6]:

from jupyros import ros3d
from ipywidgets import Layout

v = ros3d.Viewer()
v.layout = Layout(border="3px solid red", width="200px", height="100px")
The following would have had the same effect:

_static/images/service_client.png
8

<>

9

<>

Call Service

_static/images/subscriber.png
Stop

data:
data:
data:

"hello jupyter"
"hello jupyter"
"hello jupyter"

_static/images/turtlesim.gif
turtlesin = TurtleSim(background_color:)

The canvas default size is 1600 x 1600 starting from top-left
turtlesim. spawn (name: , pose={

: math. radians(90)})

turtlesim. turtles[1.path_color

_images/publisher.png
3 <
7 <
1 3

Send Message

[J Latch Message

_images/red_border.png
In [5]:

In [6]:

from jupyros import ros3d
from ipywidgets import Layout

v = ros3d.Viewer()
v.layout = Layout(border="3px solid red", width="200px", height="100px")
The following would have had the same effect:

_images/action_client.png
[INFO] [1658935103.937112]: [FIBONACCI] Waiting for action server.
[INFO] [1658935104.009992]: [FIBONACCI] Connection to server successful.

order 10 °

Send Goal Cancel Action

_images/jupyter_viewer.png
rom jupyros import ros3d

n (71 f

n [E]:‘v

()]

n [9]: ‘v.ob]ec

n [10]:‘v

_images/service_client.png
8

<>

9

<>

Call Service

_images/subscriber.png
Stop

data:
data:
data:

"hello jupyter"
"hello jupyter"
"hello jupyter"

_images/turtlesim.gif
turtlesin = TurtleSim(background_color:)

The canvas default size is 1600 x 1600 starting from top-left
turtlesim. spawn (name: , pose={

: math. radians(90)})

turtlesim. turtles[1.path_color

nav.xhtml

 Table of Contents

 		
 Welcome to jupyter-ros’s documentation!

 		
 Getting Started

 		
 Support

 		
 Installation

 		
 The jupyter-ros server extension

 		
 ROS Essentials

 		
 Subscribing to a ROS topic

 		
 Publishing to a ROS topic

 		
 Calling a ROS service

 		
 Calling a ROS action server

 		
 Turtlesim

 		
 ROS 3D Widgets

 		
 ROS Server Extension

 		
 Troubleshooting

 		
 Websocket Failure

 		
 Developer Installation

 		
 Install Jupyter-ROS

 		
 Build Documentation

 		
 Testing

 		
 Contributing

 		
 Ground Rules

 		
 Your First Contribution

 		
 Getting Started

 		
 How to Report a Bug

 		
 Security

 		
 Other bugs

 		
 How to Suggest a Feature or Enhancement

 		
 Code Review Process

 		
 Community

 		
 ROS Widgets

 		
 subscribe()

 		
 action_client()

 		
 add_widgets()

 		
 bag_player()

 		
 client()

 		
 publish()

 		
 service_client()

 		
 DepthCloud

 		
 GridModel

 		
 InteractiveMarker

 		
 LaserScan

 		
 Marker

 		
 MarkerArrayClient

 		
 OccupancyGrid

 		
 Path

 		
 PointCloud

 		
 Polygon

 		
 Pose

 		
 PoseArray

 		
 ROSConnection

 		
 SceneNode

 		
 TFClient

 		
 URDFModel

 		
 Viewer

 		
 ROS2 Widgets

_static/file.png

_static/minus.png

_static/images/action_client.png
[INFO] [1658935103.937112]: [FIBONACCI] Waiting for action server.
[INFO] [1658935104.009992]: [FIBONACCI] Connection to server successful.

order 10 °

Send Goal Cancel Action

_static/images/jupyter_viewer.png
rom jupyros import ros3d

n (71 f

n [E]:‘v

()]

n [9]: ‘v.ob]ec

n [10]:‘v

_static/plus.png

_static/images/publisher.png
3 <
7 <
1 3

Send Message

[J Latch Message

